DI Transformer LL1935

LL1935 is a transformer designed for DI (Direct Input) applications, matching high impedance guitar pickups to low impedance microphone preamp inputs, but is also ideal for 1:10 microphone input applications. The transformer consists of two coils, each with one primary and one secondary winding separated by an electrostatic shield, and a high permeability mu-metal core. The high impedance windings are wound using a special low capacitance winding technique. The transformer is encapsulated in a mu-metal case for magnetic shielding.
For best performance, the high impedance side of the transformer $(5+5)$ should be connected in series.

Turns ratio:
 $1+1: 5+5$

Dims (Length x Width x Height above PCB (mm)):
$38 \times 23 \times 16$
Pin layout (viewed from component side) and winding schematics:

Spacing between pins:	5.08 mm (0.2")
Spacing between rows of pins:	27.94 mm (1.1")
Offset of earth pin from adjacent row:	2.54 mm (0.1")
Weight:	46 g
Recommended PCB hole diameter:	1.5 mm
Static resistance of each primary (pins 5-6 and 7-8):	650Ω
Static resistance of each secondary (pins 1-2 and 3-4):	17Ω
Frequency response (reference 1.0 kHz) $10: 1$, source $100 \mathrm{k} \Omega$, secondary open: $10: 1$, source $100 \mathrm{k} \Omega$, load $1 \mathrm{k} \Omega$ $1: 10$, source 200Ω, secondary open	$20 \mathrm{~Hz}-20 \mathrm{kHz}+0 /-3 \mathrm{~dB}$ $10 \mathrm{~Hz}-45 \mathrm{kHz}+0 /-2 \mathrm{~dB}$ $10 \mathrm{~Hz}-80 \mathrm{kHz}+/-1 \mathrm{~dB}$
Distortion For practical reasons measured in 1:10 configuration. Source 150Ω, load 10k (Audio Precision portable)	$\begin{aligned} & \text {-5 dBU input level, +14 dBU output level } \\ & <0.1 \% \text { THD @ } 50 \mathrm{~Hz} \\ & \text { +7 dBU input level, +26 dBU output level } \\ & <1 \% \text { THD @ } 50 \mathrm{~Hz} \end{aligned}$
Self resonance point :	None detected in above configurations
Isolation between windings/ between windings and shield	$4 \mathrm{kV} / 2 \mathrm{kV}$

Connection alternatives (Component side view):

$5: 1$

$10: 1$

